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Background

Issues for solid fuel power
generation systems:

Environmental performance
« CO, emissions
« SO,, NOy, particles, ...
o Efficiency
e Fuel flexibility
o Fuel supply
* Fuel availability
e Cyclic operation
« Reliability, availability,
maintainability, operability
 Cost of electricity generated
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Options for Solid Fuel based
Advanced Power Generation Systems Cmnﬁgggm

* Increase in generating efficiencies

e Higher operating temperatures / pressures in steam & gas turbines
e Fuel switching, e.g.

* Replace coal by natural gas

* Replace coal with biomass — co-firing
e Capturing and storing CO,
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Carbon abatement approach: Cmnﬁeld
Strategic Trajectories (CAT) UNIVERSITY

Flexible strategy to cover uncertain future
‘Zero Emissions’

Trajectory

Carbon A
Reduction

=

0
0

Value of CO,?

&
L4

- #

‘Increased
Efficiency’
Trajectory

High efficiency combined with
"Capture ready’ concept?
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Near-term Mid-term ‘ Long-term ~ Time

» Track 1 approaches, available now, include improved efficiency by introduction of
advanced supercritical boiler/turbine technology and biomass co-firing (substitution of up
to 20% of the coal fuel by biomass which is CO, neutral).

» Track 2 approach, carbon dioxide capture and permanent underground storage, is

necessary to achieve much larger reductions, up to 95%.
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Materials Issues in Advanced Solid Fuel

Cmnﬁeld
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Power Generation Plant

More challenging component operating conditions:

Higher operating temperatures / pressures
Cyclic operation

 Wider range of fuels

Resulting materials issues:

Fireside corrosion / hot corrosion

Steamside oxidation / scale spallation / erosion
Dewpoint (aqueous) corrosion

Creep

Fatigue (LCF, HCF, TMF, .))

Alloy / coating selection

www.cranfield.ac.uk
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Potential solid fuels

» Coal
e Locally mined
 World traded
 Biomass
» Specifically cultivated biomass
(‘energy crops’) - e.g.: coppiced
willow, miscanthus

* Waste biomass — e.g. straws, wood
waste, forestry residues

 World traded biomass — e.g. palm
nut / olive / almond residues,
pelletised wood, cereal co-product
(CCP)

» Waste

e Sewage sludges; animal wastes

 Municipal solid waste (MSW)

» Refuse derived fuel (RDF)

» Solid recovered fuel (SRF)

Miscanthus

UNIVERSITY

Cranﬁeld
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Relationships between C, H & O for Cmnﬁeld
SOlld fuels UNIVERSITY
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Cl vs S for biomass & coals Cranfield

Fuel Chlorine (%)
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Cranﬁeld
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Fuel composition variability
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e Harvest time
e Post-harvest storage / treatment
e Batch to batch as-delivered
e Coals
e Coal type
e Origin (eg UK vs South America)
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Minor / Trace Element

. Cranfield
Concentrations ﬁ

NIVERSITY
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» Also elements bound in different wayS"in biomass & coal

 Elements in coal can be bound in stable mineral matter
 Elements in biomass more readily releasable (water / acid solubility)
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PULVERISED FUEL SYSTEMS Cranfield

o Coal-fired
e Older plants ~540-560°C / ~160 bar steam
o Current plants ~600-620°C / ~290 bar steam
* Future plants — steam temperatures
e 650°C - COST
e 700°C - EU THERMIE
o 750°C - USA
o Co-fired coal and biomass
 New fuel compositions/mixes
e Current and future steam conditions
e Oxy-fuel fired
 New basic combustion gas composition
 Current and future steam conditions
« Biomass co-firing

www.cranfield.ac.uk



Cranﬁeld
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Life (hours)
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Heat exchanger life, corrosion allowance, acceptable
corrosion rates
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Comparison of corrosion data for 347H and 347HFG with coal
and straw firing (plant data) and co-firing (pilot plant data)
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Plant operating conditions for Cranfield

UNIVERSITY

heat exchanger tubes

e Fuel: coal / biomass
« Oxidant: air / oxygen
e Gas stream characteristics:
» Gaseous species —e.g. SO,, HCI, O, CO,,
H,O, NO,, N,
e Vapour species —e.g. Na, K
e Particles
« From ash in fuel
« Condensed vapour species
e Gas temperature
 Heat exchanger characteristics:
 Water / steam temperature (& pressure)
* Metal temperature (& heat flux)
e Deposit
e rate of formation
e composition

wwuw.cranfield.ac.uk
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Flow Diagram for Component Life Modelling

Component
Specification

Component

Operating
Conditions

Inlet & outlet

Geometry

l gasP&T

Aerodynamic

Component design &
life criteria >

e Contaminant effects
e QOperating condition effects

Model
v
Gas flow rate Thermochemical
Metal surface P& T distributions > Model
temperature
Alloy Deposition flux & Transport & Deposition Contaminant
specification l composition Models < levels & species
Corrosion & Particle Mechanical
Erosion/Corrosion deposition Property Data
Models flux
5 \ 4
amage . . ..
e > Life Predictions
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Sensitivity of SO, vs HCI to changes in cereal co-product
(CCP) co-firing with two coals
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Sensitivity of SO, vs HCI to changes in cereal co-product (CCP) or typical
wheat straw co-firing with two coals compared to example biomass
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Deposition on Cmnﬁeld
Su perheater | Reheater UNIVERSITY

Tubing
Condensation
Vapour species onto SO|Id particles Solid particles &

rosols Ill o © aerosols
'
o

Deposition mechanisms:

Particles:
 Direct inertial impaction _ Coarse particles
_ Condensation into stick

e Thermophoresis deposit
« Eddy diffusion Vﬁ%‘?lﬁf’ SOX &

: . iffuse in
e Brownian Th?irrzgop?:r?ircelzlss of porous deposits
Vapour:

Water /
steam

e Direct condensation

e Condensation on
particles

Heat trans er

\

wwuw.cranfield.ac.uk



Cranfield

Fuel derived deposit compositions

Deposit compositions:
* Si-Al-O compounds

e can fix Na, K if particle temperatures high
enough

e Al only if coal co-fired
Ca/Mg carbonates / sulphates / chlorides
Na /K sulphates / chlorides
Fe sulphates / chlorides / oxides / sulphides
Phosphates — from biomass '

KCl-NaCl-K;50, Na;50,

Na,S0, K2504
BB4* .. 932° nea*”

Important factors
e Minerals in fuels
e Balance between elements

Corrosion aggravated by:
 Low melting point deposits
» High chloride deposits NoaCly

KoCla

LU CranTieo.ac. UK
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Effect of fuel S/Cl balance

I Td Cranﬁgggmn
on deposit compositions
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Cranfield

Possible fireside corrosion mechanisms iIn
sodium chloride / sulphate dominated deposits

Chloride based Denosit Sulphate based
mechanism AN mechanism
HCI SO, +0,+H,0
NaCl
O, / SO, + 0,
HCI Na,O
SO, + 0,

Corrosion
products
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Alkali sulphate dominated corrosion
regimes in combustion gases

Cranﬁeld
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Oxy-fuel firing Fuel Cranfield,
| €0,/H,0

=

Air

co,

clean-up

Compression

Plant options:
e Purity of oxygen Storage
e Location of flue gas recycle take-off point

 Before any gas clean-up

o After particle removal

« After flue gas desulphurisation
e Further gas clean-up before recycle

 Dry primary combustion gas stream

 Dry secondary or tertiary combustion gas streams
Have direct effect on component operating conditions

wwuw.cranfield.ac.uk



Schematic diagram of Oxy-fired Cmnﬁeld
combustion System UNIVERSITY
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Gas compositions

e UK Vs S American coals

Cran ﬁLeld
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o air vs oxy-fired with fuel gas recycle taken before FGD
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Oxy-firing: fireside materials issues Cranfield

NIVERSITY

 Gas composition
 Much higher SOx and HCI than conventional plants possible
o ~4-5times higher if recycle before FGD system
« High CO, and steam levels (at same O, levels as conventional plants)
 Higher metal operating temperatures of heat exchangers
« Higher efficiencies needed to counter CO, capture penalties
» Deposition
« Compositions and formation rates changed by
e gas compositions
 metal surface temperatures
* Fireside corrosion rates — depend on:
 Gas composition
* Deposit composition and formation rate
* Metal temperatures
 Enough differences to cause mechanism change ?
 Dewpoint (aqueous) corrosion

« Changes in gas composition can significantly increase dewpoint
temperatures

www.cranfield.ac.uk



SUMMARY Cmnﬁeld
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 Many materials issues are being raised by the on-going
developments of solid fuel fired power systems as a result of
the use of:

« Wider range of fuels with higher contaminant levels
e Higher component operating temperatures
* Novel component operating environments

* Novel environments resulting from fuel and/or oxidant changes
have a particular affect on the fireside corrosion of components

 Increased operating temperatures and plant cycling affect
mechanical requirements, as well as fireside corrosion and
steamside oxidation

e Current materials R&D activities focused on:
* Materials selection — alloys and/or coatings
« Component lives / reliability

www.cranfield.ac.uk
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Thank you for your attention
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