Materials Issues in Co-fired and Oxy-fired Combustion Power Plants

Cranfield

Nigel Simms

http://www.cranfield.ac.uk

Materials Issues in Co-fired and Oxy-fired Combustion Power Plants

Outline

- Background
- Fuels & compositions
 - Coal vs biomass
- Heat exchangers
 - Operating requirements
 - Biomass/coal co-firing
 - Gas compositions
 - Deposit compositions
 - Fireside corrosion
 - Oxy-fuel firing
 - Differences with conventional systems

• Summary

Background

- Issues for solid fuel power generation systems:
- Environmental performance
 - CO₂ emissions
 - SO_X, NO_X, particles, ...
- Efficiency
- Fuel flexibility
 - Fuel supply
 - Fuel availability
- Cyclic operation
- Reliability, availability, maintainability, operability
- Cost of electricity generated

INTERNATIONA Energy Agenc

Power Generation Other Transformation Industry Transport Other Sectors

Options for Solid Fuel based Advanced Power Generation Systems

- Increase in generating efficiencies
 - Higher operating temperatures / pressures in steam & gas turbines
- Fuel switching, e.g.
 - Replace coal by natural gas
 - Replace coal with biomass co-firing
- Capturing and storing CO₂

Carbon abatement approach: Strategic Trajectories (CAT)

- Track 1 approaches, available now, include improved efficiency by introduction of advanced supercritical boiler/turbine technology and biomass co-firing (substitution of up to 20% of the coal fuel by biomass which is CO₂ neutral).
- Track 2 approach, carbon dioxide capture and permanent underground storage, is necessary to achieve much larger reductions, up to 95%.

Cranfield

Materials Issues in Advanced Solid Fuel Power Generation Plant

More challenging component operating conditions:

- Higher operating temperatures / pressures
- Cyclic operation
- Wider range of fuels

Resulting materials issues:

- Fireside corrosion / hot corrosion
- Steamside oxidation / scale spallation / erosion
- Dewpoint (aqueous) corrosion
- Creep
- Fatigue (LCF, HCF, TMF, ..)
- Alloy / coating selection

OUTLINE

- Background
- Fuels & compositions
 - Coal vs biomass
- Heat exchangers
 - Operating requirements
 - Biomass/coal co-firing
 - Gas compositions
 - Deposit compositions
 - Fireside corrosion
 - Oxy-fuel firing
 - Differences with conventional systems
- Summary

Potential solid fuels

- Coal
 - Locally mined
 - World traded
- Biomass
 - Specifically cultivated biomass ('energy crops') - e.g.: coppiced willow, miscanthus
 - Waste biomass e.g. straws, wood waste, forestry residues
 - World traded biomass e.g. palm nut / olive / almond residues, pelletised wood, cereal co-product (CCP)
- Waste
 - Sewage sludges; animal wastes
 - Municipal solid waste (MSW)
 - Refuse derived fuel (RDF)
 - Solid recovered fuel (SRF)

Relationships between C, H & O for solid fuels

www.cranfield.ac.uk

Cranfie

CI vs S for biomass & coals

Fuel composition variability

- 12000 ■ Sander (1997) 10000 ▲ Christensen (1998) Review data Chlorine (ppm) 8000 Biomass 6000 Plant types 4000 Growth location Wheat Barley 2000 (country, soil type) **Oil Seed Rape** Fast vs slow growing 0 5000 10000 15000 20000 25000 0 30000 Harvest time Potassium (ppm)
 - Post-harvest storage / treatment
 - Batch to batch as-delivered
- Coals
 - Coal type
 - Origin (eg UK vs South America)

Minor / Trace Element Concentrations

- Also elements bound in different ways in biomass & coal
 - Elements in coal can be bound in stable mineral matter
 - Elements in biomass more readily releasable (water / acid solubility)

Cranfield UNIVERSITY

OUTLINE

- Background
- Fuels & compositions
 - Coal vs biomass
- Heat exchangers
 - Operating requirements
 - Biomass/coal co-firing
 - Gas compositions
 - Deposit compositions
 - Fireside corrosion
 - Oxy-fuel firing
 - Differences with conventional systems
- Summary

PULVERISED FUEL SYSTEMS

- Coal-fired
 - Older plants ~540-560°C / ~160 bar steam
 - Current plants ~600-620°C / ~290 bar steam
 - Future plants steam temperatures
 - 650°C COST
 - 700°C EU THERMIE
 - 750°C USA
- Co-fired coal and biomass
 - New fuel compositions/mixes
 - Current and future steam conditions
- Oxy-fuel fired
 - New basic combustion gas composition
 - Current and future steam conditions
 - Biomass co-firing

Superheater tubing – cross-section through tube wall

Heat exchanger life, corrosion allowance, acceptable corrosion rates

ĺ

Cranfield

Comparison of corrosion data for 347H and 347HFG with coal and straw firing (plant data) and co-firing (pilot plant data) (median data)

Source: COST522 / 538

Plant operating conditions for heat exchanger tubes

- Fuel: coal / biomass
- Oxidant: air / oxygen
- Gas stream characteristics:
 - Gaseous species e.g. SO₂, HCI, O_{2,} CO₂, H₂O, NO_X, N₂
 - Vapour species e.g. Na, K
 - Particles
 - From ash in fuel
 - Condensed vapour species
 - Gas temperature
- Heat exchanger characteristics:
 - Water / steam temperature (& pressure)
 - Metal temperature (& heat flux)
 - Deposit
 - rate of formation
 - composition

Cranfield UNIVERSITY

Flow Diagram for Component Life Modelling

Cranfield UNIVERSITY

OUTLINE

- Background
- Fuels & compositions
 - Coal vs biomass
- Heat exchangers
 - Operating requirements
 - Biomass/coal co-firing
 - Gas compositions
 - Deposit compositions
 - Fireside corrosion
 - Oxy-fuel firing
 - Differences with conventional systems
- Summary

Sensitivity of SO₂ vs HCI to changes in cereal co-product (CCP) co-firing with two coals

Sensitivity of SO₂ vs HCl to changes in cereal co-product (CCP) or typical wheat straw co-firing with two coals compared to example biomass

Deposition on Superheater / Reheater Tubing

Cranfield

Fuel derived deposit compositions

- Deposit compositions:
- Si-Al-O compounds
 - can fix Na, K if particle temperatures high enough
 - Al only if coal co-fired
- Ca/Mg carbonates / sulphates / chlorides
- Na / K sulphates / chlorides
- Fe sulphates / chlorides / oxides / sulphides
- Phosphates from biomass
- **Important factors**
- Minerals in fuels
- Balance between elements
- Corrosion aggravated by:
- Low melting point deposits
- High chloride deposits

Effect of fuel S/CI balance on deposit compositions

Cranfield

Possible fireside corrosion mechanisms in sodium chloride / sulphate dominated deposits

Alkali sulphate dominated corrosion regimes in combustion gases

[Natesan, Purohit & Rink, US DoE Fossil Energy Materials Conf. 2003]

Cranfield UNIVERSITY

OUTLINE

- Background
- Fuels & compositions
 - Coal vs biomass
- Heat exchangers
 - Operating requirements
 - Biomass/coal co-firing
 - Gas compositions
 - Deposit compositions
 - Fireside corrosion
 - Oxy-fuel firing
 - Differences with conventional systems
- Summary

- Location of flue gas recycle take-off point
 - Before any gas clean-up
 - After particle removal
 - After flue gas desulphurisation
- Further gas clean-up before recycle
 - Dry primary combustion gas stream
 - Dry secondary or tertiary combustion gas streams
- Have direct effect on component operating conditions

Schematic diagram of Oxy-fired combustion system

Cranfield UNIVERSITY

Source: Vattenfall

Gas compositions

• UK vs S American coals

Cranfield

Oxy-firing: fireside materials issues

- Gas composition
 - Much higher SOx and HCI than conventional plants possible
 - ~4-5 times higher if recycle before FGD system
 - High CO₂ and steam levels (at same O₂ levels as conventional plants)
- Higher metal operating temperatures of heat exchangers
 - Higher efficiencies needed to counter CO₂ capture penalties
- Deposition
 - Compositions and formation rates changed by
 - gas compositions
 - metal surface temperatures
- Fireside corrosion rates depend on:
 - Gas composition
 - Deposit composition and formation rate
 - Metal temperatures
 - Enough differences to cause mechanism change ?
- Dewpoint (aqueous) corrosion
 - Changes in gas composition can significantly increase dewpoint temperatures

SUMMARY

- Many materials issues are being raised by the on-going developments of solid fuel fired power systems as a result of the use of:
 - Wider range of fuels with higher contaminant levels
 - Higher component operating temperatures
 - Novel component operating environments
- Novel environments resulting from fuel and/or oxidant changes have a particular affect on the fireside corrosion of components
- Increased operating temperatures and plant cycling affect mechanical requirements, as well as fireside corrosion and steamside oxidation
- Current materials R&D activities focused on:
 - Materials selection alloys and/or coatings
 - Component lives / reliability

Thank you for your attention